Математика

Конструктивный объект

КОНСТРУКТИВНЫЙ ОБЪЕКТ – логико-гносеологическая категория, обозначающая объекты, возникающие в результате развертывания порождающих их конструктивных процессов. Рассматриваемые безотносительно к смыслу, который им впоследствии может быть придан, а также к их предполагаемому использованию, конструктивные объекты представляют собой некоторые специальным образом устроенные конфигурации элементарных знаков, и как таковые они должны восприниматься чисто синтаксически.

Конструктивное направление

КОНСТРУКТИВНОЕ НАПРАВЛЕНИЕ (в математике и логике) — одно из направлений в основаниях математики, в рамках которого исследования ограничиваются конструктивными процессами и конструктивными объектами. Конструктивное направление имеет точки соприкосновения с интуиционистской математикой (см. Интуиционизм). Конструктивисты сходятся с интуиционистами в трактовке предложений о существовании и в понимании дизъюнкции и в силу этого признают правильной данную Брауэром критику закона исключенного третьего. Вместе с тем конструктивисты считают неприемлемыми методологические основы интуиционизма.

Число

ЧИСЛО — одно из основных понятий математики, в которой обычно выделяют натуральное, порядковое, количественное, рациональное, иррациональное, комплексное числа. Традиция философского осмысления числа была заложена в пифагорейской школе. Пифагорейцы, согласно свидетельству Аристотеля, полагали числа «причиной и началом» вещей, а отношения чисел основой всех отношений в мире. Числа сообщают миру упорядоченность и делают его космосом. Обращение к числу, как к организующему принципу бытия, было воспринято Платоном, а позднее неоплатониками.

Социология математическая

СОЦИОЛОГИЯ МАТЕМАТИЧЕСКАЯ - собирательный термин, употребляемый обычно для обозначения совокупности математических методов и моделей, используемых при анализе и прогнозе общественных явлений, изучаемых социологией. Использование этого термина для обозначения специфического предмета «социально-математического» свойства (наподобие математической экономики в экономической науке) не получило широкого распространения в силу большого разнообразия и различия проблем самой социологической науки.

Аксиома (НФЭ, 2010)

АКСИОМА (греч. ἀξίωμα – принятое положение) – предложение, по какой-либо причине принимаемое в качестве исходного для каких-либо дальнейших рассуждений. Это общее понимание аксиомы всякий раз конкретизируется вместе с уточнением того, что понимается под предложением, причиной и под дальнейшими рассуждениями. Типичные примеры аксиом: 1) некоторое выражение символического языка исчисления, если под дальнейшими рассуждениями понимаются использующие его выводы в рамках данного исчисления. В этом случае причина принятия аксиом – само определение рассматриваемого исчисления. Здесь сомнения по поводу принятия аксиом бессмысленны...

Аксиоматическая теория множеств

АКСИОМАТИЧЕСКАЯ ТЕОРИЯ МНОЖЕСТВ, формулировка множеств теории в виде формальной (аксиоматической) системы (см. Аксиоматический метод). Основным побудительным стимулом для построения аксиоматической теории множеств явилось открытие в "наивной" теории множеств Г. Кантора, предназначенной для обоснования классической математики, парадоксов (антиномий), т. е. противоречий.

Разрешения проблема

РАЗРЕШЕНИЯ ПРОБЛЕМА – возникла в связи с осознанием невозможности провести некоторые построения дозволенными методами. Первыми примерами неразрешимых задач явились решение в радикалах уравнений выше четвертой степени и невозможность провести некоторые построения циркулем и линейкой. Общая формулировка проблемы разрешения следующая: дан класс методов Ф, дан класс проблем Р. Можно ли найти единый метод f ∈Φ (разрешающий метод), позволяющий решить каждую из проблем Р, для которой в принципе существует решение?..

Логицизм (НФЭ, 2010)

ЛОГИЦИЗМ – одно из трех главных направлений в основаниях математики наряду с интуиционизмом и формализмом. Основополагающим фактором в становлении философии логицизма явилось развитие на рубеже 19–20 вв. логики символической, которую логицизм рассматривает, как органон математики, а точнее, сводит математические утверждения к формальным импликациям логики. Г. Фреге первый построил систему теории множеств, которая практически была логической, поскольку основной принцип свертки: каждое свойство определяет множество удовлетворяющих ему элементов – имел неограниченную общность.

Философия математики

ФИЛОСОФИЯ МАТЕМАТИКИ - исследовательская область философии, в которой выявляются основания математического знания, место математики в системе знания, онтологический статус математических объектов, методы математики. Понятая так философия математики оказывается существенной частью почти всех философских систем. Практически каждый философ старался высказать свое отношение к математике и определить место этой области знания.

Метод статистический

МЕТОД СТАТИСТИЧЕСКИЙ — в психологии некоторые методы прикладной математической статистики, используемые в основном для обработки экспериментальных данных. Основная цель применения — повышение обоснованности выводов в исследованиях благодаря использованию вероятностной логики и вероятностных моделей. Можно выделить следующие направления использования метода статистического в психологии: 1) описательная статистика, включающая в себя группировку, табулирование, графическое представление и количественное описание данных; 2) теория статистического вывода, используемая в исследованиях для предсказания результатов по данным обследования выборок; 3) теория планирования экспериментов, служащая для обнаружения и проверки причинных связей между переменными.

Страницы

Subscribe to RSS - Математика
Яндекс.Метрика