Чистое доказательство существования в математике
ЧИСТОЕ ДОКАЗАТЕЛЬСТВО СУЩЕСТВОВАНИЯ В МАТЕМАТИКЕ - доказательство существования математического объекта без указания на способ его построения. Примером этого может служить известное доказательства теоремы Гаусса о том, что любое алгебраическое уравнение n-й степени с действительными или комплексными коэффициентами имеет по крайней мере один корень. При этом доказательство Гаусса не содержит никаких указаний но то, каким же образом можно найти этот корень.