Парадоксы и трудности теории множеств
ПАРАДОКСЫ И ТРУДНОСТИ ТЕОРИИ МНОЖЕСТВ. С 90-х гг. 19 в. начинается широкое обсуждение парадоксов теории множеств. Кроме парадокса Бурали – Форти существует парадокс Рассела, вскрывающий сложную логическую природу понятия бесконечного множества. Анализируя канторовскую теорему о множестве-степени, Рассел выделил понятие «множества, которое не является элементом самого себя». Напр., множество всех множеств не будет таковым, а множество натуральных чисел – будет. Однако в отношении множества всех множеств, не являющихся элементами самого себя, мы уже не можем решить, будет ли оно обладать свойством не являться своим элементом или нет. Оба ответа ведут к противоречию. Подобные размышления привели Рассела к выделению предикативных и непредикативных свойств множеств, и построению т.н. теории типов, которую он развивал совместно с Уайтхедом. Можно привести также формулировку парадокса Банаха – Тарского, который хотя и не относится непосредственно к теории множеств, но характеризует ту математику, которая вытекает из этой теории. Парадокс формулируется так: можно разбить шар на конечное число частей, которые можно переставить так, что получатся два шара такого же размера, как и исходный шар.
Теория множеств оказалась естественным языком для решения стоявшей веками задачи арифметизации континуума. Во 2-й пол. 19 в. было предложено несколько арифметических конструкций действительных чисел (К. Вейерштрасс, Р.Дедекинд, Г.Кантор). Мощность получающихся числовых моделей континуума оказывалась равна 2ℵ0. Кантор предположил, что 2ℵ0 = ℵ1 – наименьшая из мощностей, больших ℵ0 – мощности множества натуральных чисел: {1,2,3,...}. Это утверждение и называется континуум-гипотезой. Но несмотря на пламенную веру Кантора в истинность этого результата, ни ему, ни последующим математикам не удалось доказать этого факта. Более того, в 1963 П.Коэн доказал, что континуум-гипотеза независима от системы аксиом теории множеств Цермело – Френкеля. Другими словами, континуум-гипотеза не может быть ни доказана, ни опровергнута в теории, опирающейся на эту систему аксиом. Философский смысл этих результатов в том, что если мощность континуума равна какому-то «алефу», (не обязательно № 1, т.е. обобщенная континуум-гипотеза), то континуум «конструируется из точек». Сам же Коэн считал, что континуум-гипотеза скорее всего не верна, что континуум «рассматривается как невероятно большое множество, которое дано нам какой-то смелой новой аксиомой и к которому нельзя приблизиться путем какого бы то ни было постепенного процесса построения» (Коэн П. Теория множеств и континуум-гипотеза. М., 1969, с. 282).
Другой классической проблемой теории множеств является аксиома выбора. Она формулируется следующим образом: дано некоторое, вообще говоря, бесконечное множество множеств. Существует функция, ставящая в соответствие каждому множеству один его элемент (выбирающая из каждого множества по элементу). Несмотря на простоту формулировки аксиомы выбора, трудно представить, как бы можно было ее доказать. В то же время от этой аксиомы зависит большое множество теорем анализа, а в самой теории множеств – доказательство фундаментальной теоремы Цермело о возможности сравнения мощностей различных множеств. Благодаря работам Геделя (1939) и Коэна (1963) было установлено, что аксиома выбора независима от корпуса других аксиом теории множеств Цермело – Френкеля. Вместо аксиомы выбора были предложены альтернативные аксиомы, напр. аксиома детерминированности. При изменении аксиом теории множеств, естественно, меняется и характер математики, построенной на базе этой теории множеств.
Б. H. Катасонов
Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин, А.А. Гусейнов, Г.Ю. Семигин. М., Мысль, 2010, т. I, А - Д, с. 250.